Let's first consider 3D View Frustum→2D Projection Plane

• Consider the projection of a 3D point on the camera plane

Perspective projection

similar triangles:

$$\frac{y'}{d} = \frac{y}{-z}$$
$$y' = -dy/z$$

Homogeneous coordinates revisited

- Perspective requires division
 - that is not part of affine transformations
 - in affine, parallel lines stay parallel
 - therefore not vanishing point
 - therefore no rays converging on viewpoint
- "True" purpose of homogeneous coords: projection

Homogeneous coordinates revisited

• Introduced w = 1 coordinate as a placeholder

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \to \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- used as a convenience for unifying translation with linear

• Can also allow arbitrary w

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \sim \begin{bmatrix} wx \\ wy \\ wz \\ w \end{bmatrix}$$

Implications of w

- All scalar multiples of a 4-vector are equivalent
- When *w* is not zero, can divide by *w*
 - therefore these points represent "normal" affine points
- When w is zero, it's a point at infinity, a.k.a. a direction
 - this is the point where parallel lines intersect
 - can also think of it as the vanishing point
- Digression on projective space

Perspective projection

to implement perspective, just move z to w:

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} -dx/z\\-dy/z\\1 \end{bmatrix} \sim \begin{bmatrix} dx\\dy\\-z \end{bmatrix} = \begin{bmatrix} d & 0 & 0 & 0\\0 & d & 0 & 0\\0 & 0 & -1 & 0 \end{bmatrix} \begin{vmatrix} x\\y\\z\\1 \end{vmatrix}$$

So far, 3D View Frustum→2D Projection Plane

• What we've just seen is a story of $3D \rightarrow 2D$

Now, 3D View Frustum→3D Cuboid

- What we have to do is $3D \rightarrow 3D$
 - Let's first consider a viewing frustum \rightarrow a cuboid with the same near and far offset (not a canonical view volume)

- Perspective has a varying denominator—can't preserve depth z!
- Instead, preserve depth on near and far planes.

Now, 3D View Frustum→3D Cuboid

- What we have to do is $3D \rightarrow 3D$
 - Let's first consider a viewing frustum \rightarrow a cuboid with the same near and far offset (not a canonical view volume)

Perspective has a varying denominator—can't preserve depth z!

3D View Frustum→3D Cuboid

$$\begin{bmatrix} x'\\y'\\z'\\1\end{bmatrix} = \begin{bmatrix} -dx/z\\-dy/z\\-X/z\\1\end{bmatrix} \sim \begin{bmatrix} dx\\dy\\X\\-z\end{bmatrix} = \begin{bmatrix} d & 0 & 0 & 0\\0 & d & 0 & 0\\c_0 & c_1 & a & b\\0 & 0 & -1 & 0\end{bmatrix} \begin{bmatrix} x\\y\\z\\1\end{bmatrix}$$

- Note that z' is independent of x and y, therefore $c_0 = c_1 = 0$
- We want z depth -near \rightarrow -near, -far \rightarrow -far

$$X = az + b \qquad z'(z) = -X/z = -\frac{az+b}{z}$$

- Find 2 unknowns a, b with 2 eq. z'(-n)=-n, z'(-f)=-f
- \rightarrow a = f+n, b = fn (try it)

Final: 3D View Frustum→3D Canonical View Volume

• By substituting d with n, P=

$$\begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & f+n & fn \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

- Now the remaining work is mapping the cuboid to a canonical view volume: M_{orth}
- Viewing frustum \rightarrow cuboid \rightarrow canonical view volume: $M_{pers} = M_{orth} P$

Final: 3D View Frustum→3D Canonical View Volume

- This projection matrix M_{pers} results in non-linear mapping of the original depth values (z values) to the range (-1, +1).
- This makes more precision for z values close to the camera and less precision for z values farther from the camera.

Perspective Projection Matrix

•
$$M_{pers} = M_{orth} P$$

$$= \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & f+n & fn \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Acknowledgement

- Acknowledgement: Some materials come from the lecture slides of
 - Prof. Taesoo Kwon, Hanyang Univ., <u>http://calab.hanyang.ac.kr/cgi-bin/cg.cgi</u>
 - Prof. Steve Marschner, Cornell Univ., <u>http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml</u>