Let's first consider 3D View Frustum \rightarrow 2D Projection Plane

- Consider the projection of a 3D point on the camera plane

Perspective projection

The size of an object on the screen is inversely proportional to its distance

similar triangles:

$$
\begin{aligned}
& \frac{y^{\prime}}{d}=\frac{y}{-z} \\
& y^{\prime}=-d y / z
\end{aligned}
$$

Homogeneous coordinates revisited

- Perspective requires division
- that is not part of affine transformations
- in affine, parallel lines stay parallel
- therefore not vanishing point
- therefore no rays converging on viewpoint
- "True" purpose of homogeneous coords: projection

Homogeneous coordinates revisited

- Introduced $w=1$ coordinate as a placeholder

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- used as a convenience for unifying translation with linear
- Can also allow arbitrary w

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

Implications of \boldsymbol{w}

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

- All scalar multiples of a 4-vector are equivalent
- When w is not zero, can divide by w
- therefore these points represent "normal" affine points
- When w is zero, it's a point at infinity, a.k.a. a direction
- this is the point where parallel lines intersect
- can also think of it as the vanishing point
- Digression on projective space

Perspective projection

to implement perspective, just move z to w:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x / z \\
-d y / z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
d x \\
d y \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

So far, 3D View Frustum \rightarrow 2D Projection Plane

- What we've just seen is a story of $3 \mathrm{D} \rightarrow 2 \mathrm{D}$

$$
\begin{gathered}
\text { [}\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x / z \\
-d y / z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
d x \\
d y \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
\end{gathered}
$$

Now, 3D View Frustum \rightarrow 3D Cuboid

- What we have to do is $3 \mathrm{D} \rightarrow 3 \mathrm{D}$
- Let's first consider a viewing frustum \rightarrow a cuboid with the same near and far offset (not a canonical view volume)

- Perspective has a varying denominator-can't preserve depth z!
- Instead, preserve depth on near and far planes.

Now, 3D View Frustum \rightarrow 3D Cuboid

- What we have to do is $3 \mathrm{D} \rightarrow 3 \mathrm{D}$
- Let's first consider a viewing frustum \rightarrow a cuboid with the same near and far offset (not a canonical view volume)

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x / z \\
-d y / z \\
-X / z \\
1
\end{array}\right] \sim\left[\begin{array}{c}
d x \\
d y \\
X \\
-z
\end{array}\right]=\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
c_{0} & c_{1} & a & b \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Perspective has a varying denominator-can't preserve depth z !

3D View Frustum \rightarrow 3D Cuboid

- Note that z^{\prime} is independent of x and y, therefore $c_{0}=c_{1}=0$
- We want z depth -near \rightarrow-near, -far \rightarrow-far

$$
X=a z+b \quad z^{\prime}(z)=-X / z=-\frac{a z+b}{z}
$$

- Find 2 unknowns a, b with 2 eq. $z^{\prime}(-n)=-n, z^{\prime}(-f)=-f$
- $\rightarrow \mathrm{a}=\mathrm{f}+\mathrm{n}, \mathrm{b}=\mathrm{fn}$ (try it)

Final: 3D View Frustum \rightarrow 3D Canonical View Volume

- By substituting d with $\mathrm{n}, \mathrm{P}=$
$\left[\begin{array}{cccc}n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & f+n & f n \\ 0 & 0 & -1 & 0\end{array}\right]$
- Now the remaining work is mapping the cuboid to a canonical view volume: $\mathrm{M}_{\text {orth }}$
- Viewing frustum \rightarrow cuboid \rightarrow canonical view volume: $M_{\text {pers }}=M_{\text {orth }} P$

Final: 3D View Frustum \rightarrow 3D Canonical View Volume

- This projection matrix $\mathrm{M}_{\text {pers }}$ results in non-linear mapping of the original depth values (z values) to the range $(-1,+1)$.
- This makes more precision for z values close to the camera and less precision for z values farther from the camera.

Perspective Projection Matrix

- $\mathrm{M}_{\text {pers }}=\mathrm{M}_{\text {orth }} \mathrm{P}$

$$
=\left(\begin{array}{cccc}
\frac{2}{r-c} & 0 & 0 & -\frac{r+1}{r-1} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right)\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & f+n & f n \\
0 & 0 & -1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+t}{r-i} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Acknowledgement

- Acknowledgement: Some materials come from the lecture slides of
- Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
- Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

